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Allstract-Knowledge of the contact stress state in layered media is important for quantitative
understanding of the mechanical reliability of the media, The two-dimensional quasi-static stress
analysis of a layer on an elastic half-space under combined normal and sliding cylindrical contact
is studied. Results are presented for the stresses in both the layer and half-space and contrasted
with the case of a homogeneous medium.

NOTATION

a contact zone half-width
ao contact zone half-width for £1 = £2

£1' VI Young's modulus, Poisson's ratio for layer
£2' V2 Young's modulus, Poisson's ratio for substrate

f coefficient of friction
h layer thickness

p(x) pressure under indenter
Po pressure under center of indenter for £1 = £2
L indenter load

q(x) shear traction under indenter
Uj displacement vector
qJ Airy's stress function

Gjj stress tensor
w Fourier transform variable.

INTRODUCTION

Analysis of the stress state in layered media under combined sliding and normal contact
is important for assessing mechanical reliability. Applications include protective coatings,
layered composite media, and thin films. The quasi-static analysis presented in this paper
permits quantifying the effects of sliding contact on a layered elastic medium.

The combined sliding and normal contact stress analysis of layered media has not
previously been performed. Theoretical results are presented for sliding contact on a
layered medium and contrasted with the case of a homogeneous medium. The cylindrical
indenter is assumed to be rigid and of circular cross-section in this study. The analysis can
be extended in a straightforward manner to include elastic indenters. The sliding contact
problem is modelled as two-dimensional with both in-plane and anti-plane sliding contact
being considered.

Quasi-static sliding contact stress analysis has previously been reported for the case
of a cylindrical indenter contacting an elastic half-space with no layer[l, 2]. Contour plots
of the Von Mises stress in Ref. [2J exhibit a maximum value at a subsurface position
directly below the indenter for low coefficients of friction, and this maximum migrates to
the surface for higher coefficients of friction. The equivalent analysis ofa spherical indenter
contacting a homogeneous half-space was also performed in Ref. [2J with similar results.
No analogous study has been performed for layered media. The normal contact problem
(i.e. with no sliding) for layered media has previously been investigated. The elasticity
theory necessary to solve for the stress state under prescribed axisymmetric normal surface
loading for a single layer on a half-space was developed by Burmister[3J and extended by
Chen[4] to axisymmetric and non-axisymmetric normal loading on multilayered half
spaces. Chen and Engel[SJ used a least-squares approach to solve the normal contact
problem, and presented the pressure profile under indenters of various geometries for a
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Fig. I. Contact problem geometry.

half-space with a single layer. Gupta and Walowit[6] investigated the normal contact
problem in plane strain for a single layer on a half-space. They developed a plane-strain
theory for arbitrary surface loading, and used an integral equation approach to study the
normal contact problem based on Ref. [7]. Results were given in Ref. [6] for the pressure
distribution under a cylindrical indenter and parameter studies were performed for the
effect of relative stiffness of the indenter, layer, and half-space. Results have not been
presented for the subsurface stress distribution caused by the normal contact on a layered
medium in either the two- or three-dimensional cases. The theory needed for arbitrary
surface loading in plane strain was previously developed in Ref. [8], although it was not
utilized to study the sliding contact problem.

In the present work, a detailed analysis of the subsurface stresses in plane strain due
to normal and sliding contact on a half-space with a single layer has been performed. In
addition anti-plane sliding, important for some geometries, is studied here and an
approximate theory treating the layer as a membrane is given.

IN-PLANE STRESS ANALYSIS

An important ingredient necessary to solve the contact problem is an elasticity solution
for arbitrary boundary loading on the surface of a half-space. The approach in Ref. [6]
will be followed for the plane-strain case. In the layer the stresses and displacements are
taken as functions of x and z1 while in the half-space they are functions of x and z2 (Fig. 1).
The normal and tangential tractions are prescribed in a certain region Ixl ~ Q on the
surface Z t = 0, and outside this region the surface is traction-free

O"~;)(x, 0) = - p(x), Ixl ~ Q

O"~~)(x, 0) = - q(x), Ix[ ~ Q

O"~;)(x, 0) = O,lxl > Q

O"~~)(x, 0) = O,lx[ > Q

(1)

The interface between the layer and the half-space is required to have continuous tractions
and displacements for all values of x

O"~~)(x, h) = O"~~)(x, 0)

O"~;)(x, h) = O"~;)(x, 0)

u(l)(x, h) = U(2)(X,O)

w(1)(x, h) = w(2)(x, 0)'
(2)

Superscripts (I) and (2) refer to the layer and half-space, respectively. There is in addition
a boundedness condition for the solution in the half-space for large x and Z2. The stresses
are next expressed in terms of Airy's stress function, cpo Equilibrium is thus automatically
satisfied, while elastic compatibility requires that the stress function be biharmonic[9]

(3)

The solution is obtained by taking the Fourier transform of cp and the stresses and
displacements with respect to x using the definitions

f
oo

- iwxO"zz = 0":: e dx,
-CL

(4)
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etc. Equation (3) then reduces to an ordinary differential equation, the solution of which is

fp(ll = (AI + Blzde-IWIZt + (C I + DIZl)elwlzt

fp2 = (A 2 + B2Z2)e-lwlz2
(5)

Here ~(I) and ~(2) are the solutions in the layer and substrate, respectively. Enforcement
of the two boundary and four interface conditions then leads to a linear system of six
equations for the six coefficients AI' B I , Cb D I , A2, B2 in the form

P
it
o
o
o
o

(6)

where p and it are the Fourier transforms of the normal pressure and shear traction on
the surface, respectively. (The coefficient matrix A is given in Ref. [6].) For a prescribed
boundary loading p(x) and q(x), the numerical solution procedure is to determine p and ij
(which can be done analytically for simple enough loadings), then solve eqn (6) at a number
of discrete frequencies, followed by numerical inverse transformation to obtain the stresses
and displacements. The integrand of the Fourier inversion for the displacements becomes
singular as w tends to zero. This is the manifestation in the Fourier transform solution of
singular behavior of displacements in two-dimensional contact problems[lO). This problem
is eliminated if, instead of the absolute displacement w(I)(X,ZI)' we compute the relative
displacement w(l)(X,Zl) - w(!)(X.. ZI), where x, is a reference point. As discussed below, it
is the relative displacement which is needed in any case in solving the contact problem.

ANTI-PLANE STRESS ANALYSIS

For anti-plane sliding the out-of-plane shear traction component on the surface is
given by

IT~;I(X, 0) = - fp(x) E r(x). (7)

Given this prescribed boundary loading, the stresses are solved for in the medium as
follows. The anti-plane strain case is uncoupled from the in-plane case. The only non-zero
displacement component is v E uy, which is a function of x and Z only. Equilibrium requires
that v be a harmonic function. The boundary condition is given by eqn (7) under the
indenter while the boundary is traction-free elsewhere. The interface conditions are that v
and IT,z are continuous. Taking the Fourier transform of the displacements and stresses
results in the solution

if!) = A e-Iwlzl

if21 = Be -lwlz2 + C elwlz2
(8)

The Fourier transform of the boundary and interface conditions then give three equations
for the unknowns A, B, and C, which are solved for explicitly. Knowing A, B, and C, the
displacement v and its spatial derivatives can be calculated, and the Fourier transform of
the stresses are determined from the constitutive relations

$AS 23:5-C

OV
IT,z = J-L oz' (9)
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where 11 is the shear modulus. The results for the anti-plane shear stress are

(10)

where t = e1w1h, 11' = 112/111 and ji = (1 - 11')/(1 + 11'). As in the in-plane case, the numerical
solution procedure is to the first Fourier transform the applied shear tractions on the
boundary analytically. The stresses are then determined using eqns (10) by numerical
inverse Fourier transformation.

MEMBRANE APPROXIMATION

For the case of very thin layers (where the layer thickness is much smaller than the
contact zone) a simplified theory can be derived. In this case the layer acts essentially as
a membrane attached to a half-space. The normal stress Un and the shear stress Ux: are
assumed to be the same as in the non-layered case, and it is assumed that the layer does
not appreciably alter the pressure profile. Hence the pressure profile from the non-layered
contact solution is prescribed. The membrane stress component (Jxx is significantly affected
by the presence of the layer, however.

The equation of equilibrium for a membrane subjected to shear tractions ql and q2
on its top and bottom surfaces, respectively, is

(II)

The membrane also has pressure prescribed on its top surface. The stress (J:: is assumed
to be constant with z in the membrane, so u~;)(x, z) = - p(x). From the isotropic elastic
constitutive relation, Uxx is given by

(12)

Here u< 1) is the horizontal displacement component in the membrane and EI' \'1 are
Young's modulus and Poisson's ratio in the membrane. Substituting in eqn (11) results in

E1h 02U(l)

(l - vf) ox2
(13)

The half-space solution is expressed in terms of Airy's stress function as presented above.
The Fourier transform of cp(2) is then given by

The interface conditions at Z2 = 0 are

U~;)(x,0) = - p(x)

u~~)(x,O) = Q2(X)

u<2)(X,0) = u(ll(x).

(14)

(15)
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Equations (11)-(15) may be reduced to three equations that are solved for UU ), A and B.
The stress C1JCJC can then be solved for in the layer and substrate by numerical inverse
Fourier transformation. As shown below, results from the full two-dimensional theory
indicate that the membrane theory is a good approximation when the ratio, a/h, of the
contact zone half width to layer thickness is greater than 20.

CONTACT SOLUTiON

Having solved for the traction boundary value problem for a layered half-space, the
normal contact problem may be solved by either of two approaches. In the first, by using
the solution for p(x) = b(X) and applying the contact boundary condition a singular integral
equation can be derived which is solved numericaUy for the unknown pressure distribution
in the contact zone[6]. In the second approach the unknown pressure is expanded in a
series of basis functions, the coefficients of which are determined by considering a weak
statement of the contact boundary condition[5]. We have chosen to follow the latter
approach to solving the contact problem for the foUowing reason. The pressure distribution
under realistic indenters will be a relatively smooth function (such as a circular distribution
for the case when a layer is not present), but the discretization procedure for the integral
equation presented in Ref. (6] will still require a fairly large number of points to accurately
represent such a function, and this situation becomes progressively worse for thin layers.
Using the basis function approach is preferable, because the Hertz solution for the case
when the layer and half-space elastic properties are the same provides a good first basis
function, while a relatively small number of higher order basis functions (typically less than
five) is needed to accurately represent smooth pressure distributions.

For the case of a rigid, cylindrical indenter contacting a layered half-space, the normal
traction boundary condition on Uzz at z = 0 is replaced by the mixed condition

w(l)(X,O) - w(1)(a, O) = W(x),lxl < a; (16)

where W is the prescribed relative displacement under the indenter (easily calculated
knowing the shape of the indenter). A weak statement of this condition, is that the least
square error, If, between the prescribed and actual displacement at the surface be minimized

8 =la (ow - W)2dx (17)

where bw(X) = w(1)(x,O) - w(l)(a,O). Next, the pressure distribution under the indenter is
expanded in terms of a series of basis functions

N

p(x) = r Qjp;(x).
j= 1

(18)

Let bW;(X) be defined as the relative vertical surface displacement due to p;(x) acting alone.
By linear superposition, the displacement can be expanded in terms of the bWj

N

ow(x) = L a,bWj(x).
i= 1

(19)

Substituting into eqn (17), and minimizing by setting the derivatives of If with respect to
the unknown coefficients a j to zero results in the least-squares normal equations for aj

Ka = f (20)
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(21)

After solving the coefficients, ai' the pressure distribution under the indenter can be
calculated from eqn (18). It is preferable to have the displacement basis functions bWi

orthogonal or nearly so to ensure well-conditioned normal equations. This is not possible
because one first chooses the pressure basis functions Ph and then solves for the bWi

numerically using the Fourier transform approach described above, In practice, however,
we found that the following pressure basis function choice leads to well-conditioned normal
equations so that their accurate solution is not a problem:

pdx) =: )(1 -:~)

Pi(X):;: cose
i ~ 3.n:} i> 1. (22)

The first basis function gives the exact Hertz solution for the case where the layer and
substrate properties are identical.

The Fourier transform of each of the surface pressure functions in eqns (22) is
determined analytically

_ sin (f1 - w)a sin (f1 + w)a
Pi =: (f1- w) + (f1 + w) ; i =: 2, ... ,N.

(23)

Equation (6) is then solved at a discrete number offrequencies for the unknown coefficients
AI' 8 1, etc. Numerical inverse Fourier transformation is then performed for the surface
displacements bwi(x).

Once the normal contact problem is solved, the pressure distribution on the boundary
is known. The stresses at any point in the layer or half-space can then be determined from
eqn (6) by numerical inverse Fourier transformation. For the case of fully-developed sliding
contact, the pressure profile in the contact zone is assumed to be unaltered by the shearing
tractions. This assumption becomes increasingly valid for higher values of Poisson's ratio
and lower coefficients offriction[llJ. and is accurate for the numerical values used in this
paper. The shear traction under the indenter is then given by q(x) :;: fp{x) where f is the
coefficient of friction of the indenter/layer interface. The stresses due to in-plane sliding
contact are then solved for using eqns (6) via numerical inverse Fourier transformation,
while the anti-plane shear stress in anti-plane sliding is solved for using eqns (10).

A computer program has been developed to implement the numerical approach
described above. The program first solves the normal contact problem to determine the
pressure profile under the indenter. The stresses at any point in the layer or substrate are
then calculated for normal contact with either in-plane or anti-plane sliding. A complication
is that the normal contact problem is geometrically nonlinear. because the contact zone
size changes as the load increases. This is solved by an iterative approach where the contact
half-width a is prescribed, and the mixed boundary problem (16) is then solved. The load
is calculated from

(24)
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where the pressure p(x) is known from eqn (18). Given two values of contact width a1 and
a2' with corresponding loads L 1 and L 2 that are below and above the desired load, L, a
linear secant is used to determine the next estimate for a

a = (L - fJ)/rx (25)

where rx = (L 1 - L 2 )/(al - a2) and fJ = L 1 - rxal' To start the iteration, two starting values
of the contact width are needed that bracket the desired load. These are available from
the Hertz solution. One value is determined from the Hertz solution for a half-space whose
elastic properties are the same as those in the underlying half-space in the layered problem,
while the other value is obtained from the Hertz solution for a half-space whose properties
are the same as the layer material. This iterative procedure has been found in practice to
converge rapidly.

RESULTS

The numerical solution of the sliding contact problem described above was first
compared with cases for which exact solutions were available. For the normal contact case
with the layer and substrate elastic properties equal the pressure profile agrees with the
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Fig. 4. Stress at x = ao/2 under combined normal and in-plane sliding contact (j = 0).

Hertz solution, while in the sliding contact case the stresses under the indenter agreed with
the exact solution presented by Hamilton and Goodman[2]. Letting the layer thickness
tend to zero and infinity, respectively, the Hertz solution with appropriate elastic constants
was recovered.

Results were next calculated for the layered case, using 0.3 for Poisson's ratio in both
the layer and substrate. First, the pressure profile under the indenter was calculated for a
wide range of applied loads. The pressure at the center of the indenter, normalized by the
pressure from the Hertz solution (based on a half-space with properties the same as the
layer) is shown in Fig. 2. For very small loads the presence of the substrate is not felt and
the Hertz solution based on the layer properties is recovered, while for large loads the
properties of the half-space dominate. Between these two asymptotic limits a smooth
transition region exists. Next, a parameter study was performed on the effect of different
layer and substrate stiffnesses on the pressure profile under the indenter (Fig. 3). The size
of the contact zone and the pressure under the center of the indenter is quite different from
the Hertzian case when £1 differs significantly from £2' Figures 2 and 3 agree with similar
results in Ref. [6].

Next the stresses in the layer and substrate under the indenter were computed for
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Fig. 5. Stress at x = Qo/2 under combined normal and in-plane sliding contact (f = 0.25).

normal contact with in-plane sliding. The load was set to the value Lo which corresponds
to ao/h = I when £. = £2' where ao is the contact zone half-width for the non-layered
case. The three non-zero stress components (1n.' (1,1' and (1xz are plotted as a function of
depth at x = ao/2, for values of the coefficient of friction f =0, 0.25 and 0.5 (Figs 4-6). The
maximum values of all three stress components increases when the layer is stitTer than the
substrate. The stitTer layer behaves essentially as a beam attached to the half-space. Severe
bending stress develops in the layer, resulting in an almost linear distribution of (1;vc through
the layer. This stress component is tensile at the interface for a stitTer layer which is
significant for cracks at the base of the layer and orthogonal to the interface. The shear
stress at the interface is also aggravated by the stitTer layer. For layers that are more
compliant than the substrate. both the maximum values of the stresses and the interfacial
shear stress are reduced.

To investigate the influence of the layer on yielding in the layer or substrate, results
for the Von Mises stress JJ2/po, where J2 is the second invariant of the stress deviator
tensor were next computed for the case ao/h = I. Contour plots are shown in Fig. 7 for
the case where layer and substrate elastic properties are the same. The results in Fig. 7
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agree with the non-layered solution presented in Ref. [2]. Contour plots for £ 1 = 2£2 are
shown in Fig. 8. For this case the ratio of contact zone half-width to h is a/h = 0.77, and
the presence of the stiffer layer severely distorts the contours with significant discontinuities
occurring at the interface. For f = 0 the presence of the layer brings the point of maximum
Von Mises stress close to the interface, and the maximum is 40% higher than in the non
layered case. For f = 0.25 the maximum stress moves closer to the surface compared to
the non-layered case, and its value is also approximately 40% higher than in the non
layered case. For f = 0.5 the Von Mises stress is a maximum at the surface for both the
layered and non-layered cases but its value is 52% higher in the non-layered case. Results
for the maximum Von Mises stress under the indenter for £1 = 2£2 and f = 0 were
computed for a wide range of ao/h. It was found that the maximum is always in the layer.
For ao/h ~ 0.7, the maximum is above the interface, and above ao/h ::; 2.5 the maximum
position is at the surface. For intermediate ao/h the maximum position is at the interface.
In all cases the maximum value is greater than in the non-layered case.

Results for the case £ 1 = 0.5£2 are shown in Fig. 9. Here a/h = 1.26, and the maximum
Von Mises stresses are approximately 20% lower than in a non-layered medium, and there
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is only a mild discontinuity at the interface. Results for the maximum Von Mises stress
under the indenter for £ 1 =0.5£2 and f =0 were computed for various values of ao/h,
and the maximum was always found to be less than in the non-layered case. The maximum
is in the layer for ao/h s;; 1.5 and in the substrate for ao/h ~ 1.5. The point of maximum
-JJ2 is not the point of maximum tensile principal stress of the sliding contact cases studied.
The tensile stress tends to be highest near the surface at the rear edge of the contact zone.

Because layer materials can be brittle and contain surface defects, the influence of the
layer elastic stiffness on the tensile stress on the surface is of interest. Results for (1xx on
the surface at x = 0 are shown in Fig. 10 for f = 0,0.25, and 0.5. Increasing the coefficient
of friction dramatically increases the maximum tensile stress on the surface for the values
of £1 and £2 studied. A similar effect was previously reported for spherical contact on a
non-layered medium[2]. At the higher coefficients of friction it is beneficial to have a more
compliant coating while the opposite is true for lower coefficients of friction.

The contact stress analysis was next performed for the case of a thin layer, h = ao/20.
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The stiffness of the layer does not significantly affect the pressure profile here (Fig. 11).
Results for all three non-zero stress components are shown in Fig. 12 for f = 0.5. The
values of azz and a"z do not differ appreciably from the non-layered case, while the ratio
EdE2 dramatically affects the value of au in the layer. The membrane theory discussed
above was next applied to this situation. Results for au are shown in Fig. 13 and contrasted
with the elasticity solution. The membrane theory agrees well with the elasticity solution
for the value of Gu at the interface but deviates at the surface because the flexural stiffness
of the layer is neglected. The membrane theory is accurate for large values of a/h and may
easily be extended to multiple layers.

In the anti-plane sliding contact problem, the values of a.. and Gu are the same as
in the normal contact situation. The out-of-plane shear stress, azy under the indenter due
to anti-plane sliding is presented in Fig. 14, for the case of ao = h. The maximum value of
G.y increases when the layer is stiffer than the half-space.

The results presented show that the stiffness of the layer relative to the substrate has
a strong influence on the potential for yielding in both the layer and substrate and on the
adhesion failure of the interface between them, and that in general for a fixed value of
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Fig. 14. Shear stress under the indenter for combined normal and anti-plane sliding contact (f "" 0.5).

substrate stiffness the stress state is aggravated by increasing the layer stiffness. These
results can also be used to study in a qualitative manner the significance of cracks in the
layer and at the interface. By modified application of the theory presented in Ref. [12] the
crack driving force for delamination cracks at the interface under a compressive stress (J.u

can be calculated.
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